• <rt id="8egwy"><xmp id="8egwy">
    <rt id="8egwy"></rt>
    <rt id="8egwy"></rt><samp id="8egwy"><acronym id="8egwy"></acronym></samp>
    <rt id="8egwy"></rt>
    <samp id="8egwy"><option id="8egwy"></option></samp>

    spectroscopy and microscopy

    The spectroscopy and microscopy group provides quantitative analysis of product formulations, identification of unknown materials, compositional analysis of polymers and resins, and failure analysis of coatings and adhesives.

    energy-dispersive x-ray spectroscopy

    Energy-dispersive X-ray spectroscopy is capable of surveying small samples or particles for elements from boron through uranium. Line profiles compare element concentration versus depth. Elemental mapping can be conducted to document the distribution of elements across a sample surface.

    fourier-transform infrared spectroscopy

    Fourier-transform infrared spectroscopy is a commonly used problem-solving tool. The infrared analysis provides general information about a sample’s chemical composition. The infrared spectrum can be used to confirm the identity of a material or provide generic information regarding an unknown material’s chemical family. A variety of sample handling accessories are available.

    mass spectrometry

    Mass spectrometry provides essential chemical information for resolving many complex industrial problems. Various ionization techniques and interface capabilities for HPLC and GPC separations enable effective analyses for a wide range of materials.

    nuclear magnetic resonance spectroscopy

    Nuclear magnetic resonance (NMR) spectroscopy is an analytical tool that provides detailed information about the molecular structure of a material. NMR is most commonly used to analyze organic materials such as solvents, soluble polymers, surfactants and reaction intermediates. A variety of different NMR experiments help determine chemical information.

    optical light microscopy

    Optical light microscopy is used to examine and document sample appearance and features.

    scanning electron microscopy

    Scanning electron microscopy (SEM) offers high magnification and resolution for examination of sample surfaces and cross sections. Imaging modes provide information about sample morphology and texture or information regarding variability in sample composition and density. Variable pressure imaging allows analysis of uncoated or non-conductive samples.

    x-ray diffraction

    X-ray diffraction is useful for the identification of crystalline compounds. This nondestructive technique provides semi-quantitative data on mixtures. Computer-based library searching permits positive identification of unknowns. Certain crystalline phases can be quantified.

    x-ray fluorescence

    Wavelength dispersive X-ray fluorescence can qualitatively and quantitatively determine the presence of elements from carbon through uranium. Both solids and liquids can readily be assayed for composition or contamination. Quantitative analyses can be performed either via a calibration curve or a standardless fundamental parameters technique.

    pk10三码技巧分享
  • <rt id="8egwy"><xmp id="8egwy">
    <rt id="8egwy"></rt>
    <rt id="8egwy"></rt><samp id="8egwy"><acronym id="8egwy"></acronym></samp>
    <rt id="8egwy"></rt>
    <samp id="8egwy"><option id="8egwy"></option></samp>
  • <rt id="8egwy"><xmp id="8egwy">
    <rt id="8egwy"></rt>
    <rt id="8egwy"></rt><samp id="8egwy"><acronym id="8egwy"></acronym></samp>
    <rt id="8egwy"></rt>
    <samp id="8egwy"><option id="8egwy"></option></samp>
    体彩25选5走势图 广东十一选5爱彩乐 598彩票网11选5安徽 福彩30选5综合走势图 广东福利彩票网 云南十一选五开奘结果 特码 江西快3走势图现场版 彩票刮刮乐中奖绝招 浙江12选5手机版 黑彩余额修改器app 乐天排列五17003期分析 辽宁35选7开奖直播 粤11选5历史走势图 山西快乐10分走势图派彩电子